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1D Time-varying Temperature Prediction Based on PINN
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Motivation and Measures

When predicting the temperature distribution in HTGR, simplify the pebble bed
as a porous medium and treat the fuel spheres as uniform spheres with internal
heat sources.

With simplification: unable to accurately predict local temperature variations
Without simplification: out of the capability of computer and time-consuming

Drawbacks: unable to predict the real-time temperature distribution
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Schematic Diagram of PINN model structure

Physics-informed neural networks (PINN): specialized category of ANN that
seamlessly integrate physics principles into their learning algorithms.
Differences from ANN: less depend on data, fit physical laws better

Next step: rebuild the whole temperature distribution of the core by PINN,

even when only sparsely dispersed sensor measurements are available.

Results

1D:

without internal heat sources with uniform internal heat sources
The 1nitial condition: sin 0

Boundary condition: both constant at both ends.

Dynamic Temperature Field Prediction
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the arrangement of two infinite large plates

Conclusion and Discussion

Traditional numerical methods: mesh generation

PINN: random sampling points within the solution domain.

Temperature Profile Evolution
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This study demonstrates the potential of Physics-Informed
Neural Networks as a powertul tool for solving the time-

varying heat conduction equations.

2D:

Circular Domain with Heat Sources Temperature Distribution (Finite Difference Method) Temperature Distribution (Multi-Network PINN)

Further investigation is needed to explore more complex
scenarios:

* varying internal heat sources

e multi-dimensional heat transfer

* reactor geometry
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