17–18 May 2025
Location: 清华大学核能与新能源技术研究院
Asia/Shanghai timezone

A newly developed multi-kilo-channel high-speed and high-precision waveform digitization system for Jinping Neutrino Experiment

Not scheduled
12m
Location: 清华大学核能与新能源技术研究院

Location: 清华大学核能与新能源技术研究院

北京市昌平区Y902(虎峪路)清华大学核能与新能源技术研究院
口头报告 核技术与应用、医学物理与工程 核技术与应用、医学物理与工程

Speaker

Haoyan Yang (Tsinghua University)

Abstract

Solar neutrinos provide an effective means of studying stellar evolution and neutrino oscillation. The Jinping Neutrino Experiment, located at the China Jinping Underground Laboratory, plans to develop a 500-ton liquid scintillator detector to study solar neutrinos by 2026. This will become the eighth solar neutrino observatory globally.
Recently, a mixed neutrino detection method based on waveform readout has been proposed. This method effectively reduces isotropic background signals and enhances the sensitivity of Carbon-Nitrogen-Oxygen neutrino detection. However, existing solar neutrino experiments only capture charge and time information, limited by the performance of their electronic systems. Therefore, this paper proposes a 4000-channel, high-speed, high-precision waveform digitization system. The system is designed based on the CPCI protocol and is equipped with 1 GSPS/13-bit ADCs and White Rabbit nodes. Additionally, a 30-channel waveform digitization system was designed and validated using the 1-ton prototype.
Experimental results indicate a maximum reference clock skew of 85.6 ps between channels in the waveform digitization system. The maximum acceptable event rate of the system is 193.5 kHz. These experimental results demonstrate that the waveform digitization system developed in this paper meets the JNE experiment’s physical requirements and provides a foundation for the design of a 4000-channel electronics system.

摘要

太阳中微子为研究恒星演化和中微子振荡提供了一种有效手段。位于中国锦屏地下实验室的锦屏中微子实验计划在2026年之前开发一个500吨的液体闪烁探测器来研究太阳中微子。这将成为全球第八个太阳中微子观测站。 近年来,提出了一种基于波形读出的混合中微子探测方法。该方法有效地减小了各向同性背景信号,提高了碳-氮-氧中微子探测的灵敏度。然而,现有的太阳中微子实验只捕获电荷和时间信息,受到电子系统性能的限制。为此,本文提出了一种4000通道、高速、高精度的波形数字化系统。该系统基于CPCI协议设计,配备1个GSPS/13位adc和白兔节点。此外,使用1吨重的原型设计并验证了30通道波形数字化系统。
实验结果表明,在波形数字化系统中,信道间的最大参考时钟偏差为85.6 ps。系统的最大可接受事件率为193.5 kHz。实验结果表明,本文开发的波形数字化系统满足了JNE实验的物理要求,为4000通道电子系统的设计奠定了基础。

关键词 CJPL, 电子学系统, 中微子实验
Keywords CJPL, Electronics system, Neutrino Experiment

Author

Haoyan Yang (Tsinghua University)

Presentation materials

There are no materials yet.