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SSMB Collaboration

* An initial task force has been established at Tsinghua University to promote
SSMB research with the goal of developing an SSMB storage ring.

e Three main tasks:
1. Proof-of-principle (PoP) experiment
2. Lattice design for SSMB ringl4-6!
3. Resolve related technical issues

- C. Tang, et al., An Overview of the Progress on SSMB, in
Proceedings of FLS18, Shanghai, China, 2018.

- A. Chao, et al., A Compact High-power Radiation Source Based on
Steady-state Microbunching Mechanism, SLAC Technical Report No.
SLAC-PUB-17241, 2018.

- T. Rui, et al., Strong Focusing Lattice Design for SSMB, In
Proceedings of FLS18, Shanghai, China, 2018.

- Z. Pan, et al, A Storage Ring Design for Steady-state
Microbunching to Generate Coherent EUV Light Source, in
Proceedings of FEL19, Hamburg, Germany, 2019.

- C. Li, et al., Lattice design for the reversible SSMB, in Proceedings
of IPAC19, Melbourne, Australia, 2019.




Proof-of-Principle experiments at MLS

A PoP experiment was succesfully performed at the Metrology Light Source, Berlin by a collaboration of
Tsinghua, HZB and PTB.
Phase-|
* Test of SSMB mechanism in the steady-state isochronous environment of a stored electron beam.
« With very limited resources, use existing MLS, and an existing available single-shot laser, Start Feb 2019
e demonstrated SSMB mechanism at MLS, May 2019
» quadratic dependency of coherent signal on single bunch current confirmed August 2019
Experiment is highly demanding:

- very high precision setting needed for many machine parameter simultaneously

- full understanding of all relevant micro structure smearing effects is essential

- some parameters cannot be measured to the needed accuracy —> multi-dimensional scans needed
- stability of the beam laser system (overlap, laser jitter) critical !

- unexpected physical effects appeared (impact of non-linearities, alpha bucket state)
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SSMB PoP Phase II]

Electron beam is stored in an isochronous configuration at MLS. The beam is modulated by a single-shot
laser. The beam makes one turn and returns to the modulator, which now serves as the radiator.
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[*]X. Deng, A. Chao, J. Feikes, A. Hoehl, W. Huang, R. Klein, A. Kruschinski, J. Li, A. Matveenko, Y. Petenev, M. Ries, C. Tang and L. Yan,
Experimental Demonstration of the Mechanism of Steady-state Microbunching, accepted for publishing by Natur 5/27



The Metrology Light Source

. 48 m
Circumference

frev = 6.25 MHz

Revolution frequency Ty ey =160 ns
Injection Energy 105 MeV
Operational Energy 50 MeV to 630 MeV
Beam Current 1 pA (1e-)to200 mA
Momentum Compaction Factor -5x10-2 < o < 5x10-2

25nmrad (low emittance)

emittances at 630 MeV
100nmrad (standard user)

located south of Berlin, Germany

Standard 6h @150mA

30h @1pA (1e-)
Typical lifetimes in Low emit. 2h @150mA
different operation modes Low Alpha 10h @150mA

owner and main user: Physikalisch-Technische Bundesanstalt (PTB)
operated by ,BESSYII"-staff (Helmhotz-Zentrum-Berlin)
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MLS - the storage ring

U125 undulator

* electron energy range = 50 MeV/-- 630 MeV
* storable current = single electron-- 200 mA

rf cavity, HOM damped ey Injection@
500 KV@ 500 MHz (h=80) P2y 100 MeV
|OT driven =] microtron
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Parameter setting for SSMB state as defined by Deng Xiujie

Storage ring the MLS
Circumference C' 48 m

Beam energy E 250 MeV

Longitudinal damping time 7; 0.18 s (1.1 x 10°% turns)
Natural fnergy spread o; 1.76 x 10~* | Low !
Natural horlz%t‘ﬂ_emiﬁ.a% .&u}u\

Moment unﬁmpactlon factor tﬁ

Q2 x 10 ) Very L

RF voltage 50 KV
“Zero current” bunch length o 0.4 ps
Highest peack current [pcar 6 A
Single bunch current I, 15 pA
Modulation laser wavelength A,, 1064 nm
Radiation wavelength A, 1064 nm
Undulator period A, 0.125 m
Number of undulator periods N, 30
Undulator parameter K, 2.5
Undulator peak magnetic field B, 021T
Modulation depth A 2.25
Rayleigh length R, 3.75 m
Modulation laser peak power Fiu4 600 kW
Bunching factor (A,) one turn later By 4 0.33
Bunching factor (A,) two turns later By o 0.13
Bunching factor (A,) three turns later By 4 | 0.038
Bunching factor (A,) four turns later By 4 | 0.002
Bunching factor (A,/2) one turn later Bgl 0.11
Bunching factor (A,/3) one turn later By, | 0.033

Table 1: Parameters of the single shot microbunching experiment.
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250 MEV NEGATIVE LOW ALPHA STATE (LOCO MEASUREMENT) HZB Helmholtz

Zentrum Berlin

Undulator: s =12 m QPDO01: s =16.525m QPDO01:s=31.175m
By,=2.21m B,=2.26m B,=1.34m
B,=4.55m B,=16.36 m ,QPDO00, QPD01“ = B,=1061m
_ N, =0.0013 m n, = 0.036 m . . n,=-0.15m
Emittance= 43.9 nm n', = 0.003 N, =0.19 beam imaging systems N, =-0.74
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established optical path for Compton Back Scattering measurements used for an improvised SSMB setup
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Tull acceptance angles
23mm (CA Lense 532nm)

= 1.5mrad

11m+ 4.6m
25mm (CA Lense 1um)

11m+4.2m

Storage-Ring Bunker
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Lasersystem
. | L | | Bunkerwall | | /
. Photondetection |
in Experimental
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. 3m o 5.5m P 11m b\

Extended path and dimensions (2019-06-12, Arne Hoehl)
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Laser and laser beam path inside MLS bunker
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The coherent radiation detection setup
To reduce impact of laser stray light -> signal detection on higher harmonics implemented
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Detection area in the MLS experimental hall

Lixin+Arne
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The detection box
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coherent detection only possible at 532nm (second harmonic)

-> Laser induces strong saturation and damage of photo diodes used for coherent light detection
-> due to the strong impact of stray light diode even 532nm signal disturbed due to saturation effects

Results at SSMB experiment preparation

v" General SB photon detection v photon detection with applied
v" No laser applied laserpulse
v Hence manipulation of temporal
overlap with e - bunch online
tunable
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Improvised SSMB control room located in the MLS experimental hall
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Setup Procedure

Switch MLS to negative alpha Mode, inject 40mA in N=80 bunches at 105 MeV, ramp up to 630MeV
and then ramp down to a special ramp optic at 250MeV with high dispersion at undulator (whole procedure ~1h)

,Bunch cleaning“ using multi bunch feedback to reduce number of bunches to N=20

Close undulator to desired gap

Switch on Laser: during early comissiong at 10Hz rate during later runs at 1.25 Hz

If matched to e-orbit Laser beam increases beam energy width which is seen as horizontal beam widening at
dispersive imaging systems -> maximize horizontal beam width by steering laser system mirrors to achieve
optimum beam laser overlap. This is only possible in ramp optice because only there dispersiong 0 at ID.

No further possibility to controll e-/laser overlap later in SSMB opitic.

Switching to SSMB optic and lowering alpha to very small values. Activate photo diodes for detection.

Systematic simultaneous scan of dispersion at ID (to sub-mm accuracy) using prepared combinations of
Quadrupoles, horizontal orbit and alpha0O untill coherent signal appears (time consuming !)
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Friday, May, 31st. 2019, we saw coherent signal for the first time !

my

>
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Success only two years after first SSMB Meeting

A =1064nm,FWHM = 8ns  Modulator & radiator undulator Undulator radiation ~ Photodiode
External laser ——m—s - — ~
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 The quadratic beam current scaling of the coherent radiation demonstrates unequivocally the formation
of microbunching as well as its small band width

« The coherent signal comes from 2" harmonic radiation. 1. harmonic radiation is blocked together with the
Laser light. Fundamental mode is expected to have a much higher radiation power
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Significance of SSMB PoP Phase | (A. Chao)

e Our PoP test is essentially different from the other single-pass microbunching
experiments. The key point here is to demonstrate that in a touchy isochronous
storage ring, a microbunched electron beam can stay microbunched with
definitive microbunching phase.

* Once the one-turn microbunching phase is established with the electron beam
stored stably in the required storage ring lattice, a multi-shot laser is expected to
provide the microbunching bucket for 1000 turns in Phase-Il using the same ring
configuration but replace the single-shot laser by a 1000-shot laser.

 The Phase-I experiment demonstrates phase stabilization in the optical
wavelength range, validating the scaling from RF buckets to optical
microbuckets and microbunches.
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great team !

Very exciting working atmosphere -




Recent developments

- DAWA Laser removed and sent back to Tsinghua university. An new seeded and more stable Laser aquired and
prepared for installation in the MLS bunker (during first week January 2021)
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24/27



New detection setup using fast optical switches — 1st harmonic 1064 nm
d_eveloped to block put laser pulse thus_ allowing tom Undulator >nd harmonic 532 nm
first order detection of coherent signal at 1064nm — T
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Phase-Il (planned)

* Replace the single-shot laser by a 1000-shot laser, but use the same MLS ring lattice.

« Can test only a quasi-SSMB. Microbunch lifetime ~ 1000 turns. Full SSMB requires a
dedicated ring and a CW laser.

« The SSMB Collaboration plans to launch Phase-Il. Very unfortunately delayed by COVID109.

26/27



Summary

 The Steady-State Microbunching in storage rings has the potential of starting a
new era of accelerator photon science from THz, IR, to EUV.

 The mechanism of SSMB has been demonstrated experimentally in electron
storage ring MLS. It is the first key advance of developing an SSMB high-
power coherent radiation source.

 PoP Phase | capabilities will be strongly improved by using seeded laser and a
first harmonic detection scheme (Installation January 2021)

« SSMB PoP Phase Il is under preparation and will be conducted in the near
future.
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