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Congratulations!

Success of the phase | experiment

Impressive progress on key physics and technology R&D
More and more close to be reality

Wish great success of planned SSMB project
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Before entering the topic

* The presented work has some similarity to the SSMB (strong
focusing) lattice design

* SSMB lattice design: min. o, (& high order) & min. partial o,

* This TBA design:  min. a,, (& high order) & min. Ag (due to CSR)

CSR: Coherent synchrotron radiation

What we want: when a high quality beam (low emittance, short bunch
length) passes thorough a beam line, one can keep the beam

distribution in 3D space (except in d dimension) as much as possible.
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Previous TBA design study

In Ref. [1], Venturini have designed a TBA satisfying

— min. o, (or R56 in Linac notation) & min. Ag (due to CSR)
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[1] M. Venturini Phys. Rev. Accel. Beams 19, 064401 (2016).
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Previous TBA design study

In Ref. [1], Venturini have designed a TBA satisfying

— min. o, (or R56 in Linac notation) & min. Ag (due to CSR)
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To satisfy the above two conditions, the transfer matrix from the exit of the 15t dipole
to the entrance of the 2" dipole should have

m,=7/4
m, =-9L,/8

m, =15/(2L,)
m,, = _17/4 [1] M. Venturini Phys. Rev. Accel. Beams 19, 064401 (2016).
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Previous TBA design study

* In Ref. [1], Venturini have designed a TBA satisfying

— min. o, (or R56 in Linac notation) & min. Ag (due to CSR)
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To satisfy the above two conditions, the transfer matrix from the exit of the 15t dipole
to the entrance of the 2" dipole should have

Transfer matrix of TBA:

139 117Lg
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4 8 Tr(M,.,) > 2
165 139 0 0o Periodic optics stability
2Ly, 4 criterion unsatisfied!
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Not applicable to multi-TBA beamline

If with only one of such cell with
Tr(M) > 2, it is Ok.
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Not applicable to multi-TBA beamline

R d

If with only one of such cell with
Tr(M) > 2, it is Ok.

But, if having multi such cells, it
will be difficult to control the
optical functions and emittance

growth.
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CSR immune, isochronous & periodic stable?

* Three conditions instead of two conditions
— min. o, (or R56 in Linac notation) & min. Ag (due to CSR) & Tr(M, . ) <=2



CSR immune, isochronous & periodic stable?

* Three conditions instead of two conditions
— min. a, (or R56 in Linac notation) & min. Ag (due to CSR) & Tr(M, ) <=2

e After derivations (ignored here), we found a new solution

m,=7/4

m, =-9L; /8
m,, =15/(2L;)
m,, =-17/4

An example with L; = 0.4 m

Tr(M) <2
(18.75,1.75)

bvious solution
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The new solution: a singular point

* Anexamplewith [; =0.4m
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Exactly at the point (m,;, m,,[m™]) = (-2, 0), the periodic beta functions are very large

or even unstable.
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e But near the point, one can find solutions satisfying periodic stability criterion, and
having small R56 and small emittance growth induced by CSR.
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Verified w/ practical lattice optimization

To verify this result, we did PSO optimization of practical lattice, with
eight variables and two objectives: o, (and high o)) & Ae due to CSR

Of course, some practical constraints were considered, to ensure the
periodic optical parameters are at a reasonable level.
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Verified w/ practical lattice optimization

To verify this result, we did PSO optimization of practical lattice, with
eight variables and two objectives: o, (and high o)) & Ag due to CSR

Of course, some practical constraints were considered, to ensure the
periodic optical parameters are at a reasonable level.
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Verified w/ practical lattice optimization

. . . _1 —
* Final solutions converged to a small area close to the point (m,,, m,,[m™]) = (-2, 0)
e Accord with the analytical prediction very well
Initial solutions Final solutions density of solutions
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High order o, also optimized
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Further practical lattice optimization

* For 1 GeV beam, such a TBA can be realized with a cell length of about 8 m.
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Another outcome: mitigate MBI effect

* Another outcome is that we find near the point, the microbunching
instability (MBI) can be well controlled.

e According to the previous MBI studies [2], to mitigate the MBI effect, it is
preferred to have
— phase advance close to integer times
of w between adjacent dipoles
— moderate beta function

[2] Tsai, C.-Y., S. Di Mitri, D. Douglas, R. Li, and C. Tennant. “Conditions for
Coherent-Synchrotron-Radiation-Induced Microbunching Suppression in
Multibend Beam Transport or Recirculation Arcs.” Physical Review
Accelerators and Beams 20, no. 2 (February 22, 2017): 024401.



Another outcome: mitigate MBI effect

* Another outcome is that we find nearby the point, the microbunching
instability (MBI) can be well controlled.

e According to the previous MBI studies [2], to mitigate the MBI effect, it is
preferred to have
— phase advance close to integer times
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of m between adjacent dipoles e T
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Another outcome: mitigate MBI effect

Studies showed that even with 30 repetitive TBA cells (totally 360 degrees),
the MBI gain factor can be well controlled to a sufficiently small level.
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Summary

This study suggests a new direction of TBA cell design which could

promise low o, (and higher order terms) and small emittance growth
induced by CSR, and satisfy the periodic stability criterion.

It is also found that such a design is helpful in mitigating the MBI effect.



Summary

 We hope such a TBA design would be helpful in different accelerator beam
line designs.
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Summary

We hope such a TBA design would be helpful in different accelerator beam
line designs.
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* backups



£ )longitudinal dynamics

EEZEENNF: ZEAEL

Zf =7; + R:¢6; + T5665,Z + U56666i3 + 0(5:'}) “ Lo

n1(s)
p

AL = Rg60; + T566612 + U56668? + 0(62})

n1(s) N 12(s) e

a, = —
27 Ly 2 p

AL
L_ — a15i + azb‘% + a36f’ + 0(6;1')
0

a; -0
a, -0

work to be submitt



" CSR effect

incoherent emission coherent emission
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= HCSR cancellation in TBA

. = w analytical prediction
. = = = analytical prediction
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€ )2D CSR kick model
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