

Thermal Instabilities in High-averagepower Optical Enhancement Cavity

Huan Wang

1

SSMB online workshop, 2020 Dec 7-9

OEC for SSMB light sources

■ **Optical enhancement cavity (OEC)** provides high intensity, high stability modulation field for electron beam inside modulator

Physical Review Accelerators and Beams, 23, 044002 (2020)

OEC for SSMB light sources

demands:

- 1. high power,
- 2. high stability (amplitude, frequency/phase)

Brief review of state of the art of OEC development

OEC for Thomson scattering light sources

OEC for gravitational wave detection interferometers

[1] Advances in Laboratorybased X-Ray Sources, Optics, and Applications VII: volume 11110. International Society for Optics and Photonics, 2019: 1111003.

[2] Thomx technical design report. 2014.

[3] Applied Optics 59.1 (2020): 116-121.

[4] Proc. 4th Int. Particle Accelerator Conf. (IPAC'13), Shanghai, China, May 2013. 22532255.

[5] Proc. 7th Int. Particle Accelerator Conf. (IPAC'16), Busan, Korea, May 2016. 18671869.

[6] Physical Review Accelerators and Beams, 2016, 19(11): 114701.

[7] Advances in Laboratorybased XRay Sources, Optics, and Applications VII: volume 11110. International Society for Optics and Photonics, 2019: 1111005.

[8] Classical and Quantum Gravity, 2015, 32(7):074001.

[9] Classical and Quantum Gravity, 2014, 32(2): 024001.

OEC for high-order harmonic generation

[10] Nature communications, 2019, 10(1): 110.

[11] Nature, 2012, 482(7383): 6871.

[12] Structural Dynamics, 2018, 5(5): 054301.

[13] Review of Scientific Instruments, 2019, 90(8): 083001.

[14] Optics express, 2015, 23 (12): 1510715118.

OEC for fusion energy experiment

[15] New Journal of Physics 18.12 (2016): 125005.

OEC for other applications

[16] Optics letters 39.9 (2014): 2595-2598.

[17] Optics letters 28.19 (2003): 1835-1837.

[18] High-Power, High-Energy, and High-Intensity Laser Technology II. Vol. 9513. International Society for Optics and Photonics, 2015.

[19] Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 822 (2016): 82-96. [20] Optics Letters 40.23 (2015): 5562-5565.

OEC for SSMB light sources

demands:

- 1. high power,
- 2. high stability (amplitude, frequency/phase)

OEC R&D at IJCLab

- for OEC R&D, Tsinghua SSMB group collaborate with Fabian Zomer's group at IJCLab, University of Paris-Saclay
- 2000, start R&D of OEC targeted for **Compton Polarimeter**
- 2015, start **high power** R&D of OEC for ThomX
- 2017, obtained 400 kW intra-cavity average power for few second

intra-cavity average power measured for 40 minutes with many delocks

Applied Optics 59.1 (2020): 116-121.

Huan Wang, Ph.D thesis, Tsinghua University&University of Paris-Saclay, 2020

■ **observation of modal instability**

• **transmission of M2** when intra-cavity power at ~100 kW, TEM00 degenerated with high order mode

- **intra-cavity power change with modal instability**
- cavity locked to a single TEM00 mode
- ② cavity switched to a degenerated mode
- ③ cavity reached a steady state of degenerated mode
- ④ cavity entered an oscillation state finally lose of lock

Applied Optics 59.1 (2020): 116-121.

■ modeling of modal instability

- mode degeneracy induced by thermoelastic deformation
- thermoelastic deformation- **Winkler model**

$$
\delta s = \frac{\alpha A P_c}{4\pi k}
$$

- α : thermal expansion coefficient
- **A** : laser power to thermal power conversion and absorption coefficient
- $\boldsymbol{P}_{\boldsymbol{c}}$: average power inside cavity
- **k** : thermal conductivity
- change of mirror surface **radius of curvature** $\frac{1}{R'} = \frac{1}{R}$ $\frac{1}{R} - \frac{2\alpha AP_c}{4\pi k\omega_m^2}$ $4\pi k\omega_m^2$
- **resonance condition for mode**

TEMmn $(m + n + 1)\zeta(L) + 2\pi \frac{L}{\lambda} = p \cdot 2\pi$ where Gouy phase $\zeta(z) = \arctan(z/z_R)$

• order of degenerated mode can be calculated with **ABCD matrix**

Huan Wang, Ph.D thesis, Tsinghua University&University of Paris-Saclay, 2020

Physical Review A 44.11 (1991): 7022.

Applied Optics 59.1 (2020): 116-121.

Huan Wang, Ph.D thesis, Tsinghua University&University of Paris-Saclay, 2020

25 ·ULE 20 Suprasil \widehat{E} 15
 $\frac{15}{9}$ 10 5 $\overline{0}$ 400 100 200 300 500 Ω P_c (kW)

◼ modeling of modal instability - **Winkler model**

- deformation of ULE and Suprasil lowest order of high order mode degenerated with TEM00 with longitudianal mode range [p00-10,p00+10]
	- p00 is the longitudinal mode of TEM00
	- **order of degenerated mode are pretty high** as $\omega_{mn} \propto \sqrt{n} \omega_{00}$

Applied Optics 59.1 (2020): 116-121.

Huan Wang, Ph.D thesis, Tsinghua University&University of Paris-Saclay, 2020

- implement D-shape mirrors in between M1 and M2
- dump degerated high order mode

Applied Optics 59.1 (2020): 116-121.

Huan Wang, Ph.D thesis, Tsinghua University&University of Paris-Saclay, 2020

◼ **experiment with implementation of D-shape mirrors in 2018**

- stable **200kW** intra-cavity power recorded for 30 min
- during which no alignment and feedback correction

Huan Wang, Ph.D thesis, Tsinghua University&University of Paris-Saclay, 2020

■ **issue of gain dropped needs to be solved**

issue of cavity gain drop also has been reported before but not understood

Optics Letters 35, 2052–2054 (2010). Optics Letters, 28, 1835–1837 (2003). Optics Letters, 28, 1835–1837 (2003).

Applied Optics 59.35 (2020): 10995-11002. Huan Wang, Ph.D thesis, Tsinghua University&University of Paris-Saclay, 2020

■ observation of fast power drop phenomenon in 2019

- **repeated** in two experiments
- intra-cavity power drop amplitude **tens percent** of the maximum
- time scale **tens of millisecond**

◼ **phenomenon needs to be understood**

- after experiments, microscope and atomic force microscope image of **M¹ surface**
- **damage area** with radius \sim 25 μ m at center of M1 surface
- **crack zone** extends to area with radius \sim 100 μ m
- last dataset with damage occurred, eliminated from the analysis

Applied Optics 59.35 (2020): 10995-11002. Huan Wang, Ph.D thesis, Tsinghua University&University of Paris-Saclay, 2020

Applied Optics 59.35 (2020): 10995-11002. Huan Wang, Ph.D thesis, Tsinghua University&University of Paris-Saclay, 2020

■ modeling with hot spot

- hot spot with radius r_s positioned at (d_x, d_y) on M₁
- $A =$ absorbed thermal power intra−cavity average laser power
- edge of D-shape mirror positioned at $[D_x,D_y]$

Applied Optics 59.35 (2020): 10995-11002.

Huan Wang, Ph.D thesis, Tsinghua University&University of Paris-Saclay, 2020

■ compare simulation with experiment

 $r_s = 25 \ \mu m$, $dx = dy = 0$, $Dx = Dy = 2.5 \ mm$

- o : experimental data
- x : simulation results with $A_-=1.5$ ppm
- * : simulation results with $A_+ = 2.5$ ppm

black lines : experimental data

patches : area bounded by simulated $P_c/P_r - time$ with $A_-\$ and A_+

◼ **lesson learned**: **environmental cleanness very important !!**

Issue of cavity gain drop

■ what is the reason of **cavity gain drop** vs. intra-cavity power increase? ■ what happens on mirror surface ?

mirror coating material

- kept as being solid, nonlinear optics change?
- plasma generated?
- photochemical?

- ...

Optica 2.9 (2015): 803-811. Journal of Applied Physics 124, 083102 (2018)

Issue of parametric instabilities

■ laser radiation pressure induces vibrational modes of mirror ■ vibrational modes induce optical high order mode

■ much studied in LIGO & VIRGO CW high power regime \blacksquare studies need to be carried out with mounted mirrors

Summary

■ Issues need to be studied for realizing MW OEC for SSMB

■ Tsinghua SSMB group has started experimental studies of OEC, and now preparing for high power OEC experiments

Thank you